Safeguards for accelerated market authorization of vaccines in Europe

by Suzan Slijpen & Mauritz Kop

This article has been published by the Stanford Law School ‘Center for Law and the Biosciences’, Stanford University, 15 March 2021. link to the full text: https://law.stanford.edu/2021/03/15/safeguards-for-accelerated-market-authorization-of-vaccines-in-europe/

The first COVID-19 vaccines have been approved

People around the globe are concerned about safety issues encircling the accelerated introduction of corona vaccines. In this article, we discuss the regulatory safeguards for fast-track market authorization of vaccines in Europe. In addition, we explain how the transmission of European Union law into national Member State legislation works. We then clarify what happens before a drug can be introduced into the European market. We conclude that governments should build bridges of mutual understanding between communities and increase trust in the safety of authorized vaccines across all population groups, using the right messengers.

Drug development normally takes several years

Drug development normally takes several years. The fact that it has been a few months now seems ridiculously short. How is the quality and integrity of the vaccine ensured? That people - on both sides of the Atlantic - are concerned about this is entirely understandable. How does one prevent citizens from being harmed by vaccines and medicines that do not work for everyone, because the admission procedures have been simplified too much?

The purpose of this article is to shed a little light upon the accelerated market authorization procedures on the European continent, with a focus on the situation in the Netherlands.

How a vaccine is introduced into the market

In June 2020, the Dutch government, in close cooperation with Germany, France and Italy, formed a Joint Negotiation Team which, under the watchful eye of the European Commission, has been negotiating with vaccine developers. Its objective: to conclude agreements with drug manufacturers at an early stage about the availability of vaccines for European countries. In case these manufacturers are to succeed in developing a successful vaccine for which the so-called Market Authorization (MA) is granted by EMA or CBG, this could lead to the availability of about 50 million vaccines (for the Netherlands alone).

Who is allowed to produce these vaccines?

Who is allowed to produce these vaccines? The Dutch Medicines Act is very clear about this. Only "market authorization holders" are allowed to manufacture medicines, including vaccines. These are parties that have gone through an extensive application procedure, who demonstrably have a solid pharmaceutical quality management system in place and have obtained a pharmaceutical manufacturing license (the MIA, short for Manufacturing and Importation Authorisation). This license is granted after assessment by the Health and Youth Care Inspectorate of the Ministry of Health, Welfare & Sport (IGJ) – by Farmatec. Farmatec is part of the CIBG, an implementing body of the Ministry of Health, Welfare and Sport (VWS). The M-license is mandatory for parties who prepare, or import medicines.

Read more at the Stanford Center for Law and the Biosciences!

Read more on manufacturing licenses, fast track procedures and market authorization by the European Medicines Agency (EMA) and the EC, harmonisation and unification of EU law, CE-markings, antigenic testing kits, mutations, reinfection, multivalent vaccines, mucosal immunity, Good Manufacturing Practices (GMP), pharmacovigilance, the HERA Incubator, clinical trials, compulsory vaccination regimes and continuous quality control at Stanford!

Read more

We hebben dringend een recht op dataprocessing nodig

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/we-dringend-recht-dataprocessing-nodig/

Bij een datagedreven economie hoort een gezond ecosysteem voor machine learning en artificial intelligence. Mauritz Kop beschrijft de juridische problemen en oplossingen hierbij. “We hebben dringend een recht op dataprocessing nodig.”

5 juridische obstakels voor een succesvol AI-ecosysteem

Eerder schreef ik dat vraagstukken over het (intellectueel) eigendom van data, databescherming en privacy een belemmering vormen voor het (her)gebruiken en delen van hoge kwaliteit data tussen burgers, bedrijven, onderzoeksinstellingen en de overheid. Er bestaat in Europa nog geen goed functionerend juridisch-technisch systeem dat rechtszekerheid en een gunstig investeringsklimaat biedt en bovenal is gemaakt met de datagedreven economie in het achterhoofd. We hebben hier te maken met een complex probleem dat in de weg staat aan exponentiële innovatie.

Auteursrechten, Privacy en Rechtsonzekerheid over eigendom van data

De eerste juridische horde bij datadelen is auteursrechtelijk van aard. Ten tweede kunnen er (sui generis) databankenrechten van derden rusten op (delen van) de training-, testing- of validatiedataset. Ten derde zullen bedrijven na een strategische afweging kiezen voor geheimhouding, en niet voor het patenteren van hun technische vondst. Het vierde probleempunt is rechtsonzekerheid over juridisch eigendom van data. Een vijfde belemmering is de vrees voor de Algemene verordening gegevensbescherming (AVG). Onwetendheid en rechtsonzekerheid resulteert hier in risicomijdend gedrag. Het leidt niet tot spectaculaire Europese unicorns die de concurrentie aankunnen met Amerika en China.

Wat is machine learning eigenlijk?

Vertrouwdheid met technische aspecten van data in machine learning geeft juristen, datawetenschappers en beleidsmakers de mogelijkheid om effectiever te communiceren over toekomstige regelgeving voor AI en het delen van data.

Machine learning en datadelen zijn van elementair belang voor de geboorte en de evolutie van AI. En daarmee voor het behoud van onze democratische waarden, welvaart en welzijn. Een machine learning-systeem wordt niet geprogrammeerd, maar getraind. Tijdens het leerproces ontvangt een computer uitgerust met kustmatige intelligentie zowel invoergegevens (trainingdata), als de verwachte, bij deze inputdata behorende antwoorden. Het AI-systeem moet zelf de bijpassende regels en wetmatigheden formuleren met een kunstmatig brein. Algoritmische, voorspellende modellen kunnen vervolgens worden toegepast op nieuwe datasets om nieuwe, correcte antwoorden te produceren.

Dringend nodig: het recht op dataprocessing

De Europese Commissie heeft de ambitie om datasoevereiniteit terug te winnen. Europa moet een internationale datahub worden. Dit vereist een modern juridisch raamwerk in de vorm van de Europese Data Act, die in de loop van 2021 wordt verwacht. Het is naar mijn idee cruciaal dat de Data Act een expliciet recht op dataprocessing bevat.

Technologie is niet neutraal

Tegelijkertijd kan de architectuur van digitale systemen de sociaal-maatschappelijke impact van digitale transformatie reguleren. Een digitaal inclusieve samenleving moet technologie actief vormgeven. Technologie an sich is namelijk nooit neutraal. Maatschappelijke waarden zoals transparantie, vertrouwen, rechtvaardigheid, controle en cybersecurity moeten worden ingebouwd in het design van AI-systemen en de benodigde trainingdatasets, vanaf de eerste regel code.

Read more

Machine Learning & EU Data Sharing Practices

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2020

New multidisciplinary research article: ‘Machine Learning & EU Data Sharing Practices’.

In short, the article connects the dots between intellectual property (IP) on data, data ownership and data protection (GDPR and FFD), in an easy to understand manner. It also provides AI and Data policy and regulatory recommendations to the EU legislature.

As we all know, machine learning & data science can help accelerate many aspects of the development of drugs, antibody prophylaxis, serology tests and vaccines.

Supervised machine learning needs annotated training datasets

Data sharing is a prerequisite for a successful Transatlantic AI ecosystem. Hand-labelled, annotated training datasets (corpora) are a sine qua non for supervised machine learning. But what about intellectual property (IP) and data protection?

Data that represent IP subject matter are protected by IP rights. Unlicensed (or uncleared) use of machine learning input data potentially results in an avalanche of copyright (reproduction right) and database right (extraction right) infringements. The article offers three solutions that address the input (training) data copyright clearance problem and create breathing room for AI developers.

The article contends that introducing an absolute data property right or a (neighbouring) data producer right for augmented machine learning training corpora or other classes of data is not opportune.

Legal reform and data-driven economy

In an era of exponential innovation, it is urgent and opportune that both the TSD, the CDSM and the DD shall be reformed by the EU Commission with the data-driven economy in mind.

Freedom of expression and information, public domain, competition law

Implementing a sui generis system of protection for AI-generated Creations & Inventions is -in most industrial sectors- not necessary since machines do not need incentives to create or invent. Where incentives are needed, IP alternatives exist. Autonomously generated non-personal data should fall into the public domain. The article argues that strengthening and articulation of competition law is more opportune than extending IP rights.

Data protection and privacy

More and more datasets consist of both personal and non-personal machine generated data. Both the General Data Protection Regulation (GDPR) and the Regulation on the free flow of non-personal data (FFD) apply to these ‘mixed datasets’.

Besides the legal dimensions, the article describes the technical dimensions of data in machine learning and federated learning.

Modalities of future AI-regulation

Society should actively shape technology for good. The alternative is that other societies, with different social norms and democratic standards, impose their values on us through the design of their technology. With built-in public values, including Privacy by Design that safeguards data protection, data security and data access rights, the federated learning model is consistent with Human-Centered AI and the European Trustworthy AI paradigm.

Read more